Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing.
نویسندگان
چکیده
Proper wound diagnosis and management is an increasingly important clinical challenge and is a large and growing unmet need. Pressure ulcers, hard-to-heal wounds, and problematic surgical incisions are emerging at increasing frequencies. At present, the wound-healing industry is experiencing a paradigm shift towards innovative treatments that exploit nanotechnology, biomaterials, and biologics. Our study utilized an alginate hydrogel patch to deliver stromal cell-derived factor-1 (SDF-1), a naturally occurring chemokine that is rapidly overexpressed in response to tissue injury, to assess the potential effects SDF-1 therapy on wound closure rates and scar formation. Alginate patches were loaded with either purified recombinant human SDF-1 protein or plasmid expressing SDF-1 and the kinetics of SDF-1 release were measured both in vitro and in vivo in mice. Our studies demonstrate that although SDF-1 plasmid- and protein-loaded patches were able to release therapeutic product over hours to days, SDF-1 protein was released faster (in vivo K(d) 0.55 days) than SDF-1 plasmid (in vivo K(d) 3.67 days). We hypothesized that chronic SDF-1 delivery would be more effective in accelerating the rate of dermal wound closure in Yorkshire pigs with acute surgical wounds, a model that closely mimics human wound healing. Wounds treated with SDF-1 protein (n = 10) and plasmid (n = 6) loaded patches healed faster than sham (n = 4) or control (n = 4). At day 9, SDF-1-treated wounds significantly accelerated wound closure (55.0 +/- 14.3% healed) compared to nontreated controls (8.2 +/- 6.0%, p < 0.05). Furthermore, 38% of SDF-1-treated wounds were fully healed at day 9 (vs. none in controls) with very little evidence of scarring. These data suggest that patch-mediated SDF-1 delivery may ultimately provide a novel therapy for accelerating healing and reducing scarring in clinical wounds.
منابع مشابه
Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo.
Topical treatment of superficial wounds has many advantages including decreased cost and increased ease of application compared with systemic treatments. Many of the advantages, however, are lost when it is necessary for repeated doses of topical medications to be given over an extended period of time. Therefore, a drug-delivery vehicle that delivers biologically appropriate doses in a sustaine...
متن کاملAdipose-derived Stromal Cells Promote Survival of Endothelial Cells and Keratinocytes in Wound Healing Model
Burn wounds are a significant medical challenge today. Current treatment includes the use of skin grafts or wound healing scaffolds to protect the wound and promote healing. However, pre-existing conditions and factors such as smoking can compromise normal healing thru decreased growth factor production, prolonged inflammation, tissue hypoxia, reduced cellular migration and ECM deposition, and ...
متن کاملFull-thickness wound healing using 3D bioprinted gelatin-alginate scaffolds in mice: A histopathological study
This study aimed to determine the effect of the 3D bioprinted gelatin-alginate scaffold on the full-thickness skin wound healing on mouse back and to observe the histopathological changes during the wound healing process. Using a murine wound model, full skin thickness excisions were created on the dorsum of 40 mice. Then, each mouse was randomly assigned to either the control group or treatmen...
متن کاملInvestigating the Antibacterial Property of Silver Nanoparticles in Alginate Wound Dressings
Abstract Introduction: Nanosilver is a nanotechnology product with antimicrobial property. It can improve efficiency, reduce cost and increase antimicrobial durability and performance of wound dressing. Objective: This research intended to introduce a dressing that accelerated and improved the wound healing process by keeping the wound area moist and simultaneously prevented colonization by m...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell transplantation
دوره 19 4 شماره
صفحات -
تاریخ انتشار 2010